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1 Concept

In the previous lecture, we saw classical encryption schemes and showed how these can
be broken and ways to improve such ciphers. In this lecture, we will look into encryption
schemes that are provably secure against an adversary which is computationally bounded.
We begin by briefly recalling some of the syntax that was introduced in previous lecture. An
encryption scheme is defined by three algorithms Gen, Enc and Dec, as well as a specification
of a message spaceM with |M| > 1. The key generation algorithm Gen is a probabilistic
algorithm that outputs a key k chosen according to some distribution. We denote byK the
key space, i.e., the set of all possible keys that can be output by Gen, and require K to be
finite. The encryption algorithm Enc takes as input a key k ∈ K and a message m ∈ M,
and outputs a cipher text c; we denote this by Enck(m). The encryption algorithm may be
probabilistic, so that Enck(m) might output a different cipher text when run multiple times.
We let C denote the set of all possible cipher texts that can be output by Enck(m), for all
possible choices of k ∈ K and m ∈ M.The decryption algorithm Dec takes as input a key
k ∈ K and a cipher text c ∈ C and outputs a message m ∈ M. We write Deck(c) to denote
the process of decrypting cipher text c using key k.

1.1 Definition of Perfect Secrecy

Definition 1 An encryption scheme (Gen,Enc,Dec) over a message spaceM is perfectly secret if
for every probability distribution overM, every message M ∈ M, and every cipher text c ∈ C for
which Pr[C = c] > 0:

Pr[M = m | C = c] = Pr[M = m].

Lemma 1 An encryption scheme (Gen,Enc,Dec) over a message space M is perfectly secret if
and only if for every probability distribution overM, every message m ∈ M, and every cipher text
c ∈ C :

Pr[C = c |M = m] = Pr[C = c].

Proof: Fix a distribution overM and arbitrary m ∈ M and c ∈ C. Say

Pr[C = c|M = m] = Pr[C = c].

Multiplying both sides of the equation by Pr[M =m]/Pr[C = c] gives

Pr[C = c|M = m] · Pr[M = m]
Pr[C = c]

= Pr[M = m]

Using Bayes’ theorem, the left-hand-side is exactly equal to Pr[M = m|C = c]. Thus,
Pr[M = m|C = c] = Pr[M = m] and the scheme is perfectly secret.
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Lemma 2 An encryption scheme (Gen,Enc,Dec) over a message spaceM is perfectly secret if and
only if for every probability distribution overM, every m0,m1 ∈ M, and every cipher text c ∈ C :

Pr[C = c|M = m0] = Pr[C = c|M = m1]

Proof: Assume that the encryption scheme is perfectly secret and fix messages m0,m1 ∈ M

and a cipher text c ∈ C. By Lemma 1 we have

Pr[C = c|M = m0] = Pr[C = c] = Pr[C = c|M = m1],

completing the proof of the first direction.
Assume next that for every distribution overM, every m0,m1 ∈ M, and every c ∈ C it

holds that Pr[C = c|M = m0] = Pr[C = c|M = m1]. Fix some distribution overM, and an
arbitrary m0 ∈ M and c ∈ C. Let p be Pr[C = c|M = m0]. Since Pr[C = c|M = m] = Pr[C =
c|M = m0] = p for all m, we have

Pr[C = c] =
∑

m∈M

Pr[C = c|M = m] · Pr[M = m]

=
∑

m∈M

p · Pr[M = m]

= p ·
∑

m∈M

Pr[M = m]

= p
= Pr[C = c|M = m0].

Since m0 was arbitrary, we have shown that Pr[C = c] = Pr[C = c|M = m] for all c ∈ C and
m ∈ M. Applying Lemma 1, we conclude that the encryption scheme is perfectly secret.

1.2 Shannon’s Theorem

Theorem 1 (Shannon’s Theorem) Let (Gen,Enc,Dec) be an encryption scheme over a message
spaceM for which |M| = |K| = |C|. The scheme is perfectly secret if and only if:

1. Every key k ∈ K is chosen with equal probability 1/|K| by algorithm Gen.

2. For every m ∈ M and every c ∈ C, there exists a unique key k ∈ K such that Enck(m) outputs
c.

1.3 One-Time Pad Algorithm

Let a ⊕ b denote the bitwise exclusive-or(XOR) of two binary strings a and b. The one-time
pad encryption scheme is as follows:

1. Fix an integer l > 0. Then the message spaceM, key space K , and cipher text space
C are all equal to {0, 1}l (i.e., the set of all binary strings of length l).

2. The key-generation algorithm Gen works by choosing a string from K = {0, 1}l ac-
cording to the uniform distribution (i.e., each of the 2l strings in the space chosen as
the key with probability exactly 2−l).
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3. Encryption Enc works as follows: given a key k ∈ {0, 1}l and a message m ∈ {0, 1}l,
output c B k ⊕m.

4. Decryption Dec works as follows: given a key k ∈ {0, 1}l and a cipher text c ∈ {0, 1}l,
output m B k ⊕ c.

2 Analysis

2.1 Proof of Shannon’s Theorem

The intuition behind the proof of Shannon’s theorem is as follows. First, if a scheme fulfills
item (2) then a given cipher text c could be the result of encrypting any possible plain
text m (this holds because for every m there exists a key k mapping it to c). Combining
this with the fact that exactly one key maps each m to c, and then by item (1) each key is
chosen with the same probability, perfect secrecy can be shown as in the case of the one
time pad. For the other direction, the intuition is that if |M| = |K| = |C| then there must
be exactly one key mapping each m to each c. (Otherwise, either some m is not mapped to
a given c contradicting perfect secrecy, or some m is mapped by more than one key to c,
resulting in another m′ not being mapped to c, again contradicting perfect secrecy.) Given
this, it must hold that each key is chosen with equal probability or some plain texts would
be more likely than others, contradicting perfect secrecy. The formal proof follows. Let
(Gen,Enc,Dec) be as in the theorem. For simplicity, we assume Enc is deterministic. We
first prove that if (Gen,Enc,Dec) is perfectly secret, then items (1) and (2) hold. It is not
hard to see that for every m ∈ M and c ∈ C, there exists at least one key k ∈ K such that
Enck(m) = c. (Otherwise, Pr[M = m|C = c] = 0 , Pr[M = m].) For a fixed m, consider now
the set {Enck(m)}k∈K . By what we have just said, |{Enck(m)}k∈K | ≤ |C|. We conclude that

|{Enck(m)}k∈K | = |C|

Since |K| = |C|, it follows that {Enck(m)}k∈K = |K|. This implies that there are no distinct
keys k1, k2 ∈ K with Enck1(m) = Enck2(m). Since m was arbitrary, we see that for every m
and c, there exists at most one key k ∈ K such that Enck(m) = c. Combining the above(i.e.,
the existence of at least one key and at most one key), we obtain item (2).

We proceed to show that for every k ∈ K , Pr[K = k] = 1/K . Let n = |K| and M =
{m1, . . . ,mn} and fix a cipher text c. Then, we can label the keys k1, . . . , k2 so that every
i(1 ≤ i ≤ n) it holds that Encki(mi) = c. This labeling can be carried out because, as just shown,
for every c and mi there exists a unique key ki such that Encki(mi) = c, and furthermore
these keys are distinct for distinct mi,m j (since otherwise unambiguous decryption would
be impossible). By perfect secrecy we have that for every i:

Pr[M = mi] = Pr[M = mi|C = ci]

=
Pr[C = ci|M = mi] · Pr[M = mi]

C = c

=
Pr[K = ki] · Pr[M = mi]

C = c
,
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where the second equality is by Bayes’ theorem and the third equality holds by the labeling
above (i.e., ki is the unique key that maps mi to c). From the above, it follows that for every
i,

Pr[K = ki] = Pr[C = c].

Therefore, for every i and j, Pr[K = ki] = Pr[C = c] = Pr[K = k j] and so all keys are chosen
with the same probability. We conclude that keys are chosen according to the uniform
distribution. That is, for every k, Pr[K = ki] = 1/|K| as required.

We now prove the other direction of the theorem. Assume that every key is obtained
with probability 1/K and that for every m ∈ M and c ∈ C there is a unique key k ∈ K such
that Enck(m) = c. This immediately implies that for every m and c,

Pr[C = c|M = mi] =
1
|K|

irrespective of the probability distribution overM. Thus, for every probability distribution
overM, every m,m′ ∈ M, and every c ∈ Cwe have

Pr[C = c|M = m] =
1
|K|
= Pr[C = c|M = m′],

and so by Lemma 2 the encryption scheme is perfectly secret.

2.2 One-Time Pad is Perfectly Secret

Theorem 2 The one-time pad encryption scheme is perfectly-secret.

Proof: Fix some distribution over M and fix an arbitrary m ∈ M and c ∈ C. The key
observation is that for the one-time pad,

Pr[C = c|M = m] = Pr[M ⊕ K = c|M = m]

= Pr[m ⊕ K = c] = Pr[K = m ⊕ c] =
1
2l
.

Since this holds for all distributions and all m, we have that for every probability distribution
overM, every m0,m1 ∈ M and every c ∈ C,

Pr[C = c|M = m0] =
1
2l
= Pr[C = c|M = m1].

By Lemma 2, this implies that the encryption scheme is perfectly secret.

3 Impact

3.1 Limitations of One-Time Pad

Unfortunately, the one-time pad encryption scheme has a number of drawbacks. Most
prominent is that the key is required to be as long as the message. First and foremost, this
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means that a long key must be securely stored, something that is highly problematic in
practice and often not achievable. In addition, this limits applicability of the scheme if we
want to send very long messages (as it may be difficult to securely store a very long key) or
if we don’t know in advance an upper bound on how long the message will be (since we
can’t share a key of unbounded length). Moreover, the one-time pad scheme, as the name
suggests, is only secure if used once (with the same key). Although we did not yet define
a notion of security when multiple messages are encrypted, it is easy to see informally
that encrypting more than one message leaks a lot of information. In particular, say two
messages m,m′ are encrypted using the same key k. An adversary who obtains c = m ⊕ k
and c′ = m′ ⊕ k can compute

c ⊕ c′ = (m ⊕ k) ⊕ (m′ ⊕ k)
= m ⊕m′

and thus learn something about the exclusive-or of the two messages. While this may
not seem very significant, it is enough to rule out any claims of perfect secrecy when
encrypting two messages. Furthermore, if the messages correspond to English-language
text, then given the exclusive-or of two sufficiently long messages, it has been shown to be
possible to perform frequency analysis and recover the messages themselves.

4 Implementation

4.1 How to use One-Time Pad encryption in practice

Despite its problems, the one-time-pad retains some practical interest. In some hypothetical
espionage situations, the one-time pad might be useful because it can be computed by hand
with only pencil and paper. Indeed, nearly all other high quality ciphers (such as Solitaire)
are entirely impractical without computers. Spies can receive their pads in person from
their ”handlers.” In the modern world, however, computers (such as those embedded in
personal electronic devices such as mobile phones) are so ubiquitous that possessing a
computer suitable for performing conventional encryption (for example, a phone which
can run concealed cryptographic software) will usually not attract suspicion.

The classical one-time pad of espionage used actual pads of minuscule, easily-concealed
paper, a sharp pencil, and some mental arithmetic. The method can be implemented now
as a software program, using data files as input (plaintext), output (ciphertext) and key
material (the required random sequence). The XOR operation is often used to combine the
plaintext and the key elements, and is especially attractive on computers since it is usually
a native machine instruction and is therefore very fast. However, ensuring that the key
material is actually random, is used only once, never becomes known to the opposition, and
is completely destroyed after use is hard to do. The auxiliary parts of a software one-time
pad implementation present real challenges: secure handling/transmission of plaintext,
truly random keys, and one-time-only use of the key.
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